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1 Introduction

We present a clear and general method for constructing hierarchical vector bases of arbitrary poly-
nomial degree for use in the finite element solution of Maxwell’s equations. Our focus in this paper
is on unstructured hexahedral grids with elements of higher order geometry (i.e. curved elements).
Hierarchical bases enable p-refinement methods, where elements in a mesh can have different de-
grees of approximation, to be easily implemented. This can prove to be quite useful as sections of a
computational domain can be selectively refined in order to achieve a greater error tolerance without
the cost of refining the entire domain. In [1], hierarchical vector bases for tetrahedrons are presented
up to degree 3. The tetrahedral bases presented in [2] are generalized for arbitrary polynomial de-
gree. Here we present hierarchical vector bases of arbitrary polynomial degree for hexahedrons. We
also present a systematic procedure for constructing the hierarchical degrees of freedom in terms of
the well known interpolatory degrees of freedom. This procedure is not limited to hexahedrons, but
can be applied to other topologies as well. Explicit degrees of freedom are required for any error
analysis of a particular method and are necessary for applying Dirichlet boundary conditions to the
surface of a mesh. In addition, the method presented here is unique in that the basis is computed
only once on a reference element, then mapped to topologically equivalent elements of arbitrary or-
der geometry using a set of well defined transformation rules. Recently, Hiptmair, motivated by the
theory of exterior algebra and differential forms presented a unified mathematical framework for the
construction of conforming finite element spaces [3]. In [3], both 1-form (also called H(curl) ) and
2-form (also called H(div) ) conforming finite element spaces and the definition of their degrees of
freedom are presented. These degrees of freedom are weighted integrals where the weighting func-
tion determines the character of the bases, i.e. interpolatory, hierarchical, etc . . . . We demonstrate a
set of hierarchical degrees of freedom that are consistent with this definition.

In this paper we follow the work of Ciarlet [4] and define a finite element as a set of three distinct
objects (Ω,P,A) such that:

• Ω is the polyhedral domain over which the element is defined
• P is a finite dimensional polynomial space from which basis functions are constructed
• A is a set of linear functionals (Degrees of Freedom) dual to P

Finite element basis functions are not uniquely specified until all three components of (Ω,P,A) are
defined. The finite element basis functions, denoted as {w}, are a particular basis of P implicitly
defined by the relation

Ai(wj) = δi,j (1)

We present a specific procedure for computing a hierarchical 1-form basis of arbitrary polynomial
degree as well as the corresponding hierarchical degrees of freedom.

2 Polynomials

Both interpolatory and orthogonal polynomials will be the building blocks for the hierarchical basis
functions. As such, we introduce two specific types of polynomials. The Lagrange interpolatory
polynomial of degree p, which we will denote as L

p
i (x), is defined by a distinct set of p + 1 real

valued interpolation points {Xj} ∈ [0, 1] for j = 0, . . . , p. The polynomial is constructed in such
a way that it has a value of unity at the i′th interpolation point and a value of zero at every other
interpolation point. In addition, we will use a variation of the Legendre polynomials defined over
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the reference segment [0, 1], which we will denote as l̄p(x), where p is the degree of the polynomial.
Specifically, we have

L
p
i (x) =

p
∏

j=0

j 6=i

(x − Xj)

(Xi − Xj)
; l̄p(x) = lp(2x − 1), (2)

where lp(x) is the standard definition of the Legendre polynomial of degree p defined over the
segment [−1, 1].

3 Ω - Element Topology and Geometry

We perform all computations on a reference element Ω̂ (all objects explicitly defined on the reference
element will be accented with a hat symbol). All hexahedral elements (including curved elements)
in a physical mesh are topologically equivalent to a reference element. There exists a mapping Φ
from the reference element Ω̂ to the actual element Ω. This mapping (defined by interpolatory shape
functions) and its Jacobian are defined as

x = Φ(x̂); Ji,j =
∂xj

∂x̂i

, (3)

where x̂ ∈ Ω̂ and x ∈ Ω. Unlike the approaches presented in [1], [2] and[5], we define the basis
functions ŵ on the reference element and transform them as necessary during the finite element
assembly procedure. We do this because the hierarchical basis functions are expensive to com-
pute; using the following transformations the bases need only be computed once. The appropriate
transformations for 1-forms and their derivative are

w = J−1(ŵ ◦ Φ); dw =
1

|J|
JT (dŵ ◦ Φ) (4)

4 P - Polynomial Space

For P we use the polynomial space originally proposed in [6], which is valid for discretization
of the space H(curl) . Let Qp1,p2,...,pn

denote a polynomial of n variables (x1, x2, . . . , xn) whose
maximum degree is p1 in x1, p2 in x2, . . . , pn in xn. Using this notation, the appropriate polynomial
space for a 1-form basis on the unit hexahedron is

Pp(Ω̂) = {u;ux ∈ Qp−1,p,p, uy ∈ Qp,p−1,p, uz ∈ Qp,p,p−1}; dim(Pp(Ω̂)) = 3p(p + 1)2 (5)

Note that Pp(Ω̂) does not yet define our finite element basis functions. The final hierarchical finite
element basis functions are a particular basis of Pp(Ω̂) defined by eq (1).

5 Basis Functions

In order to ensure the proper conformity across element to element interfaces, it is crucial that
the basis functions (and consequently the degrees of freedom) be associated with the various sub-
simplices of the element (e.g. edges, faces, etc . . . ). This implies that subsets of the basis will
span corresponding subspaces of the polynomial space P . If we denote a hierarchical basis on
the reference element as Ŵ , then for 1-forms, we can break this set of basis functions into three
mutually disjoint subsets such that

Ŵ = Ŵe ∪ Ŵf ∪ Ŵv, (6)

where the subscripts e, f and v denote the edges, faces and volume of the reference element. The
edge basis functions of polynomial degree p are given by

Ŵe =







L1
i (y)L1

j (z)l̄k(x)x̂
L1

i (x)L1
j (z)l̄k(y)ŷ

L1
i (x)L1

j (y)l̄k(z)ẑ
i, j = 0, 1; k = 0, . . . , p − 1 (7)



where x̂, ŷ and ẑ denote the standard Cartesian basis vectors. The indices i and j loop over the 4
edges that are tangent to these basis vectors. The index k loops over the p basis functions per edge
The subset Ŵe spans the subspace Qp−1,1,1 ⊕ Q1,p−1,1 ⊕ Q1,1,p−1, which has a dimension of 12p.
The face basis functions of polynomial degree p are given by

Ŵf =































L1
i (x)l̄j(y)l̄k(z)L2

1(z)ŷ
L1

i (x)l̄j(z)l̄k(y)L2
1(y)ẑ

L1
i (y)l̄j(x)l̄k(z)L2

1(z)x̂
L1

i (y)l̄j(z)l̄k(x)L2
1(x)ẑ

L1
i (z)l̄j(x)l̄k(y)L2

1(y)x̂
L1

i (z)l̄j(y)l̄k(x)L2
1(x)ŷ

i = 0, 1; j = 0, . . . , p − 1; k = 0, . . . , p − 2 (8)

This set of functions is grouped into 6 sub-sets, two for each face representing the basis vectors
that are in the plane of that face. The index i loops over the 2 faces that are normal to these basis
vectors. The indices j and k loop over the 2p(p−1) basis functions per face for a total of 12p(p−1).
The subset Ŵf spans the subspace Q1,p−1,p−2 ⊕ Q1,p−2,p−1 for faces normal to the x̂ direction,
Qp−1,1,p−2⊕Qp−2,1,p−1 for faces normal to the ŷ direction and Qp−1,p−2,1⊕Qp−2,p−1,1 for faces
normal to the ẑ direction. Finally, there will be a total of 3p(p− 1)2 basis functions that are internal
to the reference element (i.e. functions not shared between elements), given by

Ŵv =







l̄i(y)L2
1(y)l̄j(z)L2

1(z)l̄k(x)x̂
l̄i(x)L2

1(x)l̄j(z)L2
1(z)l̄k(y)ŷ

l̄i(x)L2
1(x)l̄j(y)L2

1(y)l̄k(z)ẑ
i, j = 0, . . . , p − 2; k = 0, . . . , p − 1 (9)

The subset Ŵv spans the subspace Qp−1,p−2,p−2 ⊕ Qp−2,p−1,p−2 ⊕ Qp−2,p−2,p−1.

It is important to point out that, by construction, the basis functions associated with a given sub-
simplex are all orthogonal to each other. For example, all basis functions associated with a given
edge are mutually orthogonal, while all of the volume (or interior) basis functions are mutually
orthogonal.

6 A - Degrees of Freedom

The set A of degrees of freedom consists of linear functionals that map an arbitrary function, g, onto
the set of real numbers. The set A satisfies three important properties; namely

• Unisolvence: A is dual to the finite element space, i.e. eq (1) must hold.
• Invariance: Degrees of freedom remain unisolvent upon a change of variables.
• Locality: The trace of a basis function on a sub-simplex is determined by degrees of freedom

associated only with that sub-simplex.

The degrees of freedom are best understood in the following context. Suppose we have a 1-form field
(for example, the 1-form electric field) that we wish to approximate using a vector basis function
expansion. The expansion would be of the form

g ≈

dim(W )
∑

i=1

Ai(g)wi (10)

The degrees of freedom act as weights in the expansion and are computed by projecting the function
g onto the dual space spanned by A in a manner completely analogous to computing the coefficients
in a Fourier expansion. This projection operation is required by finite element simulation codes to
implement source terms, boundary conditions, etc . . . .

Given the previously defined hierarchical basis functions, we can construct a hierarchical set of
degrees of freedom in a fairly simple manner. The key lies in the definition of the unisolvence
property in eq (1) and the fact that the polynomial space P and the degrees of freedom A are dual
to each other. Because the functionals from A are linear, we can form a new set by taking a linear



combination of any previously valid set and then imposing the unisolvence requirement. Consider
the well known and easy to construct interpolatory 1-form degrees of freedom

AI
i (g) = g(Φ(xi)) · J

T (~ti), (11)

where xi is a particular interpolation point in the reference coordinate system and ~ti is an edge tan-
gent vector associated with the point xi. Now we apply these degrees of freedom to our hierarchical
basis and construct the matrix

Vi,j = AI
i (ŵj); ŵj ∈ Ŵ (12)

The new hierarchical degrees of freedom, denoted AH , are then defined in terms of this transforma-
tion matrix and the interpolatory degrees of freedom by

AH = (V −1)TAI (13)

In [6], the degrees of freedom are given by the following weighted moment integrals

Ae(g) =

∫

ê

(g ◦ Φ) · JT (~tq),

Af (g) =

∫∫

f̂

(g ◦ Φ) · JT (~n × q),

Av(g) =

∫∫∫

v̂

(g ◦ Φ) · JT q

The hierarchical degrees of freedom given by eqs (12) and (13) are in fact discrete versions of these
moment integrals. For example, hierarchical degrees of freedom on an edge are expressed as a
weighted sum of interpolatory degrees of freedom associated with that edge only, while hierarchical
degrees of freedom on a face are expressed as a weighted sum of interpolatory degrees of freedom
associated with that face only. In addition, these degrees of freedom satisfy the commuting diagram
property in a discrete sense.

7 Conclusions

Hierarchical basis functions are useful for several reasons. First, they provide a simple way of con-
necting elements of different degrees of approximation in a conforming manner, this is accomplished
by discarding higher order terms on element sub-simplices. Secondly, if constructed properly the
basis functions have maximum orthogonality, which is especially important for time domain prob-
lems where a linear system needs to be solved at every time step. We have presented a set of
fully hierarchical 1-form basis functions and their corresponding degrees of freedom, suitable for
discretization of the space H(curl) on unstructured hexahedral meshes. In addition, a general pro-
cedure for computing hierarchical degrees of freedom using interpolatory degrees of freedom was
presented.
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